A 2.5-D glass micromodel for investigation of multi-phase flow in porous media.
نویسندگان
چکیده
We developed a novel method for fabrication of glass micromodels with varying depth (2.5-D) with no additional complexity over the 2-D micromodels' fabrication. Compared to a 2-D micromodel, the 2.5-D micromodel can better represent the 3-D features of multi-phase flow in real porous media, as demonstrated in this paper with three different examples. Physically realistic capillary snap-off and the formation of isolated residual oil droplets were realized, which is not possible in 2-D micromodels. Droplet size variation during an emulsion flooding was investigated on the 2.5-D micromodel, showing that the droplet size decreases sharply at the inlet, with little change in size downstream of the micromodel. Displacement of light oil with ultra-low interfacial tension (IFT) surfactant was conducted in the 2.5-D micromodel, where we were able to visualize the generation and flowing of a microemulsion phase, which agrees with, and explains observations in experiments of more complex porous media.
منابع مشابه
Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium
In the past few years, micromodels have become a useful tool for visualizing flow phenomena in porous media with pore structures, e.g., the multifluid dynamics in soils or rocks with fractures in natural geomaterials. Micromodels fabricated using glass or silicon substrates incur high material cost; in particular, the microfabrication-facility cost for making a glass or silicon-based micromold ...
متن کاملExperimental Study of Nanofluids Flow in a Micromodel as Porous Medium
For better understanding the effect of nanofluid flow in a porous medium, a set of experiments were conducted on a horizontal glass micromodel for Al2O3-water nanofluids. To characterize the flow of nanofluids the same experiment was done by pure water. The glass micromodel was constructed by a photolithography techniqu...
متن کاملExperimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media
The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...
متن کاملTransport Property Estimation of Non-Uniform Porous Media
In this work a glass micromodel which its grains and pores are non-uniform in size, shape and distribution is considered as porous medium. A two-dimensional random network model of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is achieved by assigning parametric distribution functions to pores throat and pores length, which was measured using ima...
متن کاملComparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media
The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2017